English | Español

Try our Free Online Math Solver!

Online Math Solver

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Please use this form if you would like
to have this math solver on your website,
free of charge.


Factoring Special Products

Perfect Square Trinomials

Perfect Square Trinomials

a2 + 2ab + b2 = (a + b)2
a2 – 2ab + b2 = (a − b)2

In order for a polynomial to be a perfect square
trinomial , two conditions must be satisfied:

1. The first and last terms must be perfect squares.

2. The “ middle term ” must equal 2 or – 2 times the
product of the expressions being squared in the
first and last term.

Example: Factor the following :

x2 + 8x + 16 = (x + 4)2

b.) 9x4 − 30x2z + 25z2

9x4 − 30x2z + 25z2 = (3x2 – 5z)2

The Difference of Two Squares

Difference of Two Squares

a2 – b2 = (a + b)(a − b)

Example: Factor the following :

a.) 3x2 − 27
3x2 − 27 = 3(x2 – 9)  3 is a common factor.
= 3(x + 3)(x – 3)
 

b.) 4x2 − 25y4
4x2 − 25y4 = (2x + 5y2)(2x – 5y2)

The Sum of Two Cubes

The Sum of Two Cubes
a3 + b3 = (a + b) (a2 − ab + b2)

Example: Factor: 27x3 + 125
a = 3x
b = 5

27x3 + 125 = (3x)3 + 53
= (3x + 5) [(3x)2 − 3x·5 + 52]
= (3x + 5)(9x2 − 15x + 25)

The Difference of Two Cubes

The Difference of Two Cubes
a3 − b3 = (a − b) (a2 + ab + b2)

Example: Factor: x3 − 64
a = x
b = 4

x3 − 64 = x3 – 43
= (x − 4) (x2 + 4x + 42)
= (x − 4) (x2 + 4x + 16)

Practice

Factor each perfect square trinomial completely

x2 + 14x + 49

x2 − 8x + 16

4a2 − 12ab + 9b2

4x2 + 20x + 25

n2 − 16

a4 − 16

36 p2 − 49q2

9x6 − 25y8

64x3 + 1

8x3 − 27

4x4 − 4xy3

125a6 + 8b3
 

Prev Next