English | Español

Try our Free Online Math Solver!

Online Math Solver

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Please use this form if you would like
to have this math solver on your website,
free of charge.


Rational Number Project

Understandings

But with enough experiences with concrete models, students do overcome these
misunderstandings. Below find student examples for the transitive and residual strategies:


When you teach lesson 3 you will notice students using these informal ordering strategies along
with other benchmarks to estimate fraction and subtraction problems effectively.

Order these fractions from smallest to
largest. Be prepared to explain your
thinking.

Fraction Estimation

Picture these fractions in your mind . Is the fraction greater than ½ or less than ½? Put a > or < sign
in each box to show your answer. When in doubt use fraction circles or draw pictures to help you
decide if the fraction is more or less than 1-half.


Complete these fractions so they are all close to 2/3 , but just a bit bigger.

Fraction Estimation

Work with a partner to order the fractions in each set from smallest to largest. Explain your
thinking to each other.


Which fraction is the smallest?

Which fraction is the largest?

On the back of this paper, describe your strategies for ordering these last two
fraction pairs.

Estimate the amount shaded in each example:

Shade to show about 4/7

Shade to show about 18/40

Order from smallest to largest.
Explain your reasoning:


 

Picture each fraction.
What fraction away from one whole is
each one?

10/11 is ___ away from one whole.
6/7 is ___ away from one whole.

Which fraction is larger? 10/11 or 6/7

Margo and Joshua both had a candy
bar (same size). Margo ate about 2/3 of
her candy bar. Joshua ate about 5/12
of his candy bar. Who ate less? How
do you know?
 
Ruby ran miles. Robert ran 1 miles.
How much further would Ruby need to
run to run 2 miles?

How much further would Robert need to
run to run 2 miles?

Who ran the furthest? Ruby or Robert?

If you live 2/8 of a mile from school
And you friend lives 2/5 of a mile, who
lives the nearest to the school?
Explain your thinking.
Order from smallest to largest.
Explain your reasoning:

Post Lesson Reflection

Lesson_________________

1) Number of class periods allocated to this lesson: ______________

2) Student Pages used: __________________

3) Adaptations made to lesson: (For example: added extra examples, eliminated
certain problems, changed fractions used)

4) Adaptations made on Student Pages:

5) To improve the lesson I suggest:

Prev Next