Problema Solution
if y∝x so y=mx
so prove that : (y^2)+(x^2)∝(y^2)-(x^2)
Answer provided by our tutors
y = mx
(y^2)+(x^2)/((y^2)-(x^2)) = (m^2x^2)+(x^2)/((m^2x^2)-(x^2))= (m^2 +1)/(m^2 -1), which is a constant.
So (y^2)+(x^2) varies directly with ((y^2)-(x^2))