Problema Solution
The side of a parallelogram and an included angle are 6,10, and 100 respectively . Find the lenght of the two diagonals and the area of a parallelogram
Answer provided by our tutors
Let
a = 10
b = 6
Angle B = 100 degrees
d1 = the shorter diagonal
d2 = the longer diagonal
A = the area
Angle A = 180 - Angle B
Angle A = 180 - 100
Angle A = 80
Using the The Law of Cosines we have:
d1^2 = 10^2 + 6^2 - 2ab cos(Angle A)
d1^2 = 10^2 + 6^2 - 2*10*6*(cos(80))
........
click here to see the equation solved for d1
........
d = 10.73
The length of the shorter diagonal is 10.73.
d2^2 = a^2 + b^2 - 2ab cos(Angle B)
d2^2 = 10^2 + 6^2 - 2*10*6*(cos(100))
........
click here to see the equation solved for d2
........
d2 = 12.52
The area of the parallelogram is:
A = a*b*sin(100)
A = 10*6*sin(100)
........
click here to see the calculation for A
........
A = 59.09
The area of the parallelogram is 59.09.