Math148 Homework Assignments
Read these First:
o These are the recommended homework assignments from the book. Keeping current
with homework assignments is crucial to mastering this course.
o These assignments are provisional and may be amended during the course
according to class needs. For this reason, I've left space for you to note any
changes or comments .
o Your experiences with these exercises may vary – if you still feel shaky on an
area; do a couple more similar questions. On the other hand, if you've mastered
a topic and you don‟t feel challenged, move on harder questions. The review
exercises at the end of each chapter are also good sources for extra practice.
o Some of the applied questions can be challenging at first – in some cases you
may want to return to them later. Also, occasionally we may do part of a
section, and return to do the rest later. Keep track of the ones you've done.
o Use the homework to develop good practices in structuring your work. See the
worksheet guidelines for some ideas on how to do this.
o Do odd numbers unless otherwise specified. Some symbols to note:
o OO = “Every Other odd number”.
o More challenging exercises are marked by underlining. However, your experience
may vary.
Appendix A – Expressions, and Exponents
Note: This appendix, and chapters 1 and 2, deals with review material. I won‟t be covering all these topics in class – particularly the appendix. You should use these exercises as a guide, and target those areas that you‟re weak on from the survey I handed out, and the self test.
Section  Notes  Recommended Set 
Self Test  Additional Test on basic algebra. You can use this to identify any weaknesses in algebra. It has questions on order of operations , factoring etc.  712 All 1725 all 26 28 29 31 3237 all 39 40 42 4649 all 
A1  This is a basic true false quiz on order of operations .  725 odd 
A2  Polynomials. Cover if you missed questions 712 in the Self test, or need distributive law review.  1 5 7 9 15 19 21 27 29 33 35 37 43 
A3  Factoring review . While all factoring is
important, factoring expressions of one variable is most important for
now. We'll do some more complicated factoring later. 
1 5 7 9 11 13 15 19 23 27 31 35 39 41 43 
A4  Rational Expressions. You can leave 25 27 till later if you wish.  1 3 5 9 11 13 15 17 19 21 25 27 31 33 35 
A5  Review here if you've trouble with negative exponents. There's also some scientific notation. You can leave 43 till later if you wish.  113 odd 15 19 25 27 31 33 35 37 43 
A6  Rationals and Radicals. 83 85 and 87 you can skip for now, but they show the type of expression you need to use for calculus.  1 5 7 9 11 13 15 19 23 2533 odd 35 37 39 41 43 55 57 6770 all. 83 85 87 
A7  Quadratics. You can use this for extra practice before section 23.  1 3 5 7 9 13 15 19 21 23 25 27 
Chapter 1 Homework
Section  Notes  Recommended Set 
1.1  A fundamental section. Solving linear equations is crucial to the course. We'll skip story problems for now, focus on algebra.  1 5 7 9 11 15 17 19 21 27 31 33 35 37 39 (By “graph” they mean just shade in a number line) 41 
12  Lines. Hopefully easy. Questions 41 43 45 47 51 53 are important. We may return to applications later.  5 7 9 11 13 17 19 21 25 27 37 39 41 43 45 47 51 53 
Chapter 2 Homework
Section  Notes  Recommended Set 
21  Functions!  1 3 5 9 11 13 1520 all 2129 all 33
35 39 41 45 63 odd 65 67 69 77 79 91 93 95 97 101 103 105 107 109 
22  Specific functions, transformations  1 3 5 7 9 13 17 2141 odd 43 45 49 53 
23  Quadratic functions.  1 3 5 7 9 11 15 19 21 23 25 27 29 35 37 39 43 
24  Exponential functions. Read my handout first. Remind me to talk about q37 39 55 – the graphs have special names. 
1 3 7 13 15 17 19 21 23 27 29 31 33
37 39 43 51 odd 55 57 61 67 75 
25  Logarithmic functions .  177 odd 79 83 
2 Review 
I‟m including a core review set. You can do others for additional practice. 
4 5 11 12 15 16 19 22 38 41 43 47 48
54 56 57 59 62 6471 all 72 75 81 83 
Chapter 3 Homework
Section  Notes  Recommended Set 
31  Limit idea Notation (including left
and right limits). Familiar limits ( polynomials etc Limits using algebra Limits of difference quotients . 
121 odd 23 27 31 35 37 39 41 43 47 49 55 57 
32  Continuity Recognizing points of discontinuity on a graph. Continuous functions from formula. Open and closed intervals. Where function is positive and negative Where function increasing/decreasing. Side topic in q27,29 etc– solving quadratic and rational inequalities . 
Q 27 and 29 involve a small side
track into solving inequalities. We‟ll do this graphically most of the time. 
33  Infinite limits For use in describing vertical asymptotes. limits at infinity. End behavior of functions. 
18 all 915 odd 17 19 21 23 25 31 33
35 3747 odd 51 57 59 51 is important in understanding how to remove 
34  Derivative Average rate of change The derivative from the difference quotient. Finding it from first principles. Determining from a graph where the function is differentiable (without finding the value). 
1 2 515 odd 19 25 29 30 3138 all 39 47 49 
35  Differentiation Power rule , polynomials 
147 odd 49 51 53 57^G 61^G 69 71 75
81 83 The ones marked with a “G” require extra work 
36  Differentials  1121 odd 23 25 27 We’ll skip this entire section till later, and continue with derivatives… 
37  Marginal Analysis Applying derivatives to cost analysis etc 
115 odd There's a lot of formulas in this section . You 
3 review Page 210 
1 3 5 79 all 1016 all 23 25 32 33 39 43 55 57 59 61 65 67 7275 85 93 
Chapter 4 Homework
Section  Notes  Recommended Set 
41  All about e Applying to compound interest . 19 odd 11 17 25 
19 odd 11 15 17 25 33 35 37 38 We may add extra applications. The current 
42  Derivatives of log and exponential functions  121 23 27 29 3141 odd 51 53 55 In 3141, note that if the base is not e then you should use a different formula . 
43  Derivatives of products and quotients  123 odd 39 41 43 45 47 49 51 53 55 59 61 63 67 69 71 73 75 83 85 87 
44  Chain rule. The last big rule of differentiation. See my handout for the algebra you will 
115 odd 1735 Other odd 37 39 43 45 47 49 51 57 61 63 65 69 71 77 79 83 85 89 91 93 95 96 97 Some of these (eg 91) get quite messy, you may need to spent some time over a few nights doing them. 
45  Implicit Differentiation  Optional – we'll skip for now. 
46  Related rates.  Optional – we'll skip for now. 
47  Elasticity of demand  111 odd 13 15 17 19 21 23 27 29 31 3941 43 
4 review P. 272 
3 9 11 13 17 25 29 35 41 43 
Chapter 5 Homework
Note: I've underlined harder questions. Your experience may vary. Also, I may vary the assignments depending on class needs. This list is open to change.
Section  Topics and Notes  Recommended set 
5.1  Graphing using the first derivative. Note the book uses this idea called partition 
18 all 1118 all 1933 odd 39 41 43
47 49 51 55 57 59 6368 all 69 71 75 79 79 81 83 85 97 
5.2  Graphing using the second derivative. The second derivative measures the concavity 
1 2 36 all 717 odd 19 21 23 33 37
41 43 47 51 55 
5.3  L'hopitals rule  None – not covering for now. 
5.4  Curve Sketching This section pulls together the ideas from 5.1 
1 2 3 5 7 13 15 17 21 25 31 33 35 41
45 65 67 73 75 
5.5  Absolute extrema. The important point in this section is that if 
1 3 5 7 9 11 13 15 19 21 27 29 31 35
39 41 45 51 55 
5.6  Optimization  Story problems using graphing. 
1 3 11 13 17 19 23 
5 review P. 356 
18 all 9 13 17 35 37 49 55 
Chapter 6 Homework
Section  Notes  Recommended Set 
6.1  The idea of an "antiderivative" and the indefinite integral.  112 23 25 27 47 71 other odd. 73 75 77 
6.2  Integration by substitution Note carefully how I work the examples in class, and be prepared to
think hard about these. Sometimes the correct substitution is hard to

1 3 7 923 odd 25 27 29 31 33 (these are harder). 
5.3  Differential equations  We'll skip this section. 
6.4  Definite Integral This Section covers a lot of theory. We'll just do the basic idea, and skip the details. 
1727 odd 29 31 33 35 
6.5  The fundamental theorem of calculus. Calculating definite integrals Average value applications. Doing integration on your calculator. 
529 odd 41 43 45 63 73 
6 review  1 3 5 19 21 23 33 35 36 
Chapter 7 Homework
Section  Notes  Recommended Set 
7,1  Applications of integration to area.  7 – 23 odd 25 27 29 35 – 47 odd 57 61 63 65 69
71 
7,1  A range of applications Probability Continuous income stream and future values of it. Producers and consumers surplus. 
To be determined – we'll do a selection of the
applications here. 
Prev  Next 