SIMPLIFYING CUBE ROOT FRACTIONS
Like Terms Simplifying Algebraic Expressions Junior High ,how do i convert a basic algebraic equation  simultaneous nonlinear equation solver ,    solving multiple variable polynomial equation,   multiplying and dividing powers cheat , simplifying exponents and square root calculator simplify square root of difference of two squares , integers adding, subtracting, multiplying, dividing worksheet , online factoring of complex quadratic equations with variables only, solving quadratic equations completing the square ,   Java method Convert Decimal Numbers to time, free advanced algebra add subtract rational expressions ,   adding subtracting dividing multiplying integers games calculate greatest common divisor , value for variable expression radicals roots, Adding, subtracting, multiplying and dividing Integer worksheets ,   pre-algebra ratio formula , quadratic equations square root property calculator ,   how do you divide and times add subtract integers worksheet ,  how do you do the square root on the TI-83 plus graphic calculator? , prealgebra solving equations by multiplying and dividing worksheet, solving 2nd order differential equations , distributions,partial differential equations , multiply and divide rational expressions calculator finding least common denominator to equations  greatest common divisor calculator , how use my Casio Calculator for solving linear equations Simplifying a sum of radical expressions calculator ,  quadratic equation graph hyperbola,    multiplying,dividing,adding,subtracting integers ,  convert decimal to square root fraction adding, subtracting, multiplying, dividing integers, practice worksheets on adding, subtracting,multiplying,and dividing decimals. for 6th grade ,difference between evaluation and simplification of an expression, adding subtracting multiplying dividing integers,   quadratic equation extracting square root , solving addition and subtraction equations worksheet Like Terms Simplifying Algebraic Expressions Activities Lessons ,  converting base 8 to decimal calculator    greatest common factor for three number with variables ,   worksheets on add subtract multiply divide fractions , adding and subtracting fractions with like denominators worksheet ,  worksheet on adding,subtracting,multiplying,dividing integers
Thank you for visiting our site! You landed on this page because you entered a search term similar to this: simplifying cube root fractions.We have an extensive database of resources on simplifying cube root fractions. Below is one of them. If you need further help, please take a look at our software "Algebrator", a software program that can solve any algebra problem you enter!

Topic 9.2 (Rational Exponents)

Every positiveinteger has a positive and negative square root.

The square rootof:     16   =    4

The square rootsign:    is called the root symbol.

16 is calledthe radicand

The number inthe v of the radical is called the index number or root number. If

there isnt any number show it is 2,  otherwise if you have a cube root& etc.

the3 will be written in the index (root) number position.

A square root of a negative numbercan never be a real number.

REMEMBER:   The square root of 16 is 4,  why , because 4 squaredis 16.

Therefore: the square root of -16 cannot be found in the real number system,

because 4 or -4 squared  will not be 16.

25    =    5      The primary or principal root which is alwayspositive.

-  25    =   -5       The secondary root which is alwaysnegative.

25    =   5      The double root which is always positive andnegative.

If the index (root) number is even, a negative number will not result in a real

number.

If the index (root)  number is odd, a negative number will work, giving a

negative answer.      - 8    =     - 2

The above reads the cube root of   -8   is   -2.

________________________________________________________________________________

am/n   =   (    a)m  =   (am)This says the nth root of a to themth power.

The nth root of a.

82/3   =   (     8)2  =       (82)  This says the cube root of 8 squared.

The cube root of 8.

When solving this kind of problem change the original to its corresponding

radical.

REMEMBER:The numerator of the fraction is the exponent of the radicand and

the denominator is the index (root) number.

It is easier to change the fractional exponent to a root raised to a

power. This means is easier to take the root and than raise it to

the power.

82/3   =     (      8)2 = (2)2 = 4

The cube root of 8  =  2

165/4 = (     16)5 = (2)5 =32

The fourth root of 16 = 2.

________________________________________________________________________________

NEGATIVE EXPONENTS

x-n  =    1/xn    and 1/x-n =  xn      This means when the exponentis negative in

the numerator (upstairs), allterms affected by

the negative exponents are moved to the

denominator (downstairs) and the exponents

are changed to a positive exponent

Also when the terms have a negative

exponent in the denominator they are moved

to the numerator and the exponent is

changed to a positive exponent.

Example:  (All answers must have apositive exponent.)

2x-2y3/ w-1z-3               Move the x term to the denominator, and the w term to

the numerator and change the sign of the exponents.

2wy3 / x2z3                   Ans.

______________________________________________________________________________

(2-1x4y-3/  z-2)-2            Move the terms with the negative exponents up or down

(x4z2 / 2y3)-2                   and change the exponent to positive. (terms inside the

parenthesis.

(2y3 / x4z2)2                      Next turn the whole fraction upside down and change the

sign of the outside exponent to positive.

Now raise a power to a power.

4y6 / x8z4                         Ans.

There is also a way to work theseproblems by raising a power to a power right at

the start and them changing to apositive exponent.  The only problem with this

is you might miss writing down anegative at some point and the problem will be

wrong.

_______________________________________________________________

SIMPLIFYING RADICALS

To simplify a radical expression

Make sure all perfect roots are taken out.

No fractions are left under the radical sign.

The denominator of a fraction doesnt contain a radical.

The index number and the exponent of the radicand do not

contain a common factor.

(72)     =    (36 2)     =      62

(8x4y12z5)    =    (4 2x4y12z4z)  =     2x2y6z2 (2z)

(242x7y3z15)  =     (121 2x6xy2yz14z)  =      11x3yz7 (2xyz)

________________________________________________________________________________

(1/5)   change to   1/5 ,   multiply the numerator and the

denominator by   5.

5/  (25)     =       5 /  5.

(3/2)   =   3 / 2 multiply the numerator and the denominator by   2.

6 / 4    =     6 /   2.

A short cut: Multiply the numerator by the denominator and put this in

in the numerator of the answer under the radical and put the old

denominator in the denominator of the answer without the radical.

(3/5)    =      (15) /  5

_________________________________________________________________________

5/ 7)   multiply the numerator and the denominator by   7.

5 7 /  49    =    5 7/  7

___________________________________________________________________________________

(6/ 5)   multiply the numerator and the denominator by   5.

(30)/  (25)     =       (30) /  5.

_________________________________________________________________________

(32)      =    3        divide the exponent by the index no. 2

(74)     =    72     divide the exponent by the index no. 2.

_________________________________________________________________________

ADDING AND SUBTRACTING RADICALS

To add or subtract radicals you musthave the same radicand and the

sameindex number.

22   +   52   -   32  =   42.

8    +    (18)   -     (50)       Simplify allterms (remove all perfect

squares)

(4x 2)  +    (9x 2)   -    (25x 2)

22    +         32    -        52  =   0

____________________________________________________________________________________

CONJUGATES

In a problem like:    5 /(2  + 7) You must multiply the numerator and the

denominator by 2  - 7.

This is called the conjugate. Theconjugate is the same two numbers with the sign

betweenthem changed.

Suchas:     5   -   3 theconjugate is   5    +    3.

2   +    5 the conjugate is    2    -    5.

So in the problemabove           5  (2-  7            =        10    -    57       =

(2   +  7)(2   -  7)                 4   -   7

10   -   57      =           -10  +   57

-3                                        3